skip to main content


Search for: All records

Creators/Authors contains: "Vonesh, James R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Warming has broad and often nonlinear impacts on organismal physiology and traits, allowing it to impact species interactions like predation through a variety of pathways that may be difficult to predict. Predictions are commonly based on short‐term experiments and models, and these studies often yield conflicting results depending on the environmental context, spatiotemporal scale, and the predator and prey species considered. Thus, the accuracy of predicted changes in interaction strength, and their importance to the broader ecosystems they take place in, remain unclear. Here, we attempted to link one such set of predictions generated using theory, modeling, and controlled experiments to patterns in the natural abundance of prey across a broad thermal gradient. To do so, we first predicted how warming would impact a stage‐structured predator–prey interaction in riverine rock pools betweenPantalaspp. dragonfly nymph predators andAedes atropalpusmosquito larval prey. We then described temperature variation across a set of hundreds of riverine rock pools (n = 775) and leveraged this natural gradient to look for evidence for or against our model's predictions. Our model's predictions suggested that warming should weaken predator control of mosquito larval prey by accelerating their development and shrinking the window of time during which aquatic dragonfly nymphs could consume them. This was consistent with data collected in rock pool ecosystems, where the negative effects of dragonfly nymph predators on mosquito larval abundance were weaker in warmer pools. Our findings provide additional evidence to substantiate our model‐derived predictions while emphasizing the importance of assessing similar predictions using natural gradients of temperature whenever possible.

     
    more » « less
  2. Abstract

    Warming can impact consumer–resource interactions through multiple mechanisms. For example, warming can both alter the rate at which predators consume prey and the rate prey develop through vulnerable life stages. Thus, the overall effect of warming on consumer–resource interactions will depend upon the strength and asymmetry of warming effects on predator and prey performance.

    Here, we quantified the temperature dependence of both (a) density‐dependent predation rates for two dragonfly nymph predators on a shared mosquito larval prey, via the functional response, and (b) the development rate of mosquito larval prey to a predator‐invulnerable adult stage. We united the results of these two empirical studies using a temperature‐ and density‐dependent stage‐structured predation model to predict the effects of temperature on the number of larvae that survive to adulthood.

    Warming accelerated both larval mosquito development and increased dragonfly consumption. Model simulations suggest that differences in the magnitude and rate of predator and prey responses to warming determined the change in magnitude of the overall effect of predation on prey survival to adulthood. Specifically, we found that depending on which predator species prey were exposed to in the model, the net effect of warming was either an overall reduction or no change in predation strength across a temperature gradient.

    Our results highlight a need for better mechanistic understanding of the differential effects of temperature on consumer–resource pairs to accurately predict how warming affects food web dynamics.

    A freeplain language summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Many animals with complex life cycles can cope with environmental uncertainty by altering the timing of life history switch points through plasticity. Pond hydroperiod has important consequences for the fitness of aquatic organisms and many taxa alter the timing of life history switch points in response to habitat desiccation. For example, larval amphibians can metamorphose early to escape drying ponds. Such plasticity may induce variation in size and morphology of juveniles which can result in carry-over effects on jumping performance. To investigate the carry-over effects of metamorphic plasticity to pond drying, we studied the Túngara frog,Physalaemus pustulosus, a tropical anuran that breeds in highly ephemeral habitats. We conducted an outdoor field mesocosm experiment in which we manipulated water depth and desiccation and measured time and size at metamorphosis, tibiofibula length and jumping performance. We also conducted a complimentary laboratory experiment in which we manipulated resources, water depth and desiccation. In the field experiment, metamorphs from dry-down treatments emerged earlier, but at a similar size to metamorphs from constant depth treatments. In the laboratory experiment, metamorphs from the low depth and dry-down treatments emerged earlier and smaller. In both experiments, frogs from dry-down treatments had relatively shorter legs, which negatively impacted their absolute jumping performance. In contrast, reductions in resources delayed and reduced size at metamorphosis, but had no negative effect on jumping performance. To place these results in a broader context, we review past studies on carry-over effects of the larval environment on jumping performance. Reductions in mass and limb length generally resulted in lower jumping performance across juvenile anurans tested to date. Understanding the consequences of plasticity on size, morphology and performance can elucidate the linkages between life stages.

     
    more » « less